
HSSC A
Computer Science

Syllabus

For exams in 2026 & onwards



INTRODUCTION TO ZUEB
The Ziauddin University Examination Board (ZUEB) is not only an awarding body but also a
solution-driven educational organization dedicated to upholding the highest standards of
academic excellence. ZUEB believes in excellence, integrity, and innovation in education.
Established with a vision to foster a robust educational environment, ZUEB is committed to
nurturing intellectual growth and development that meets international standards in an effective
manner. The Ziauddin University Examination Board (ZUEB) was established through the
Government Gazette No. XLI on June 6th, 2018. Its purpose is to ensure high quality, maintain
global standards, and align the syllabi with national integrity within Pakistan's examination
system. ZUEB manages student appeals, regulates assessments, and reviews policies to
maintain high standards.

WHY CHOOSE HSSC-A AT ZUEB?
Ziauddin University Examination Board (ZUEB) offers the HSSC-A (Higher Secondary School
Certificate Advance) program, designed for students from international educational backgrounds.
This program provides a structured, affordable, and academically strong pathway for learners to
align with Pakistan's education system. It allows students to fulfil national curriculum
requirements, including Urdu, Islamiyat, Pakistan Studies, or Sindhi, with academic integrity and
flexible learning options. ZUEB believes no student should be left behind due to financial
limitations or cross-system transitions, and HSSC-A serves as a bridge between past efforts
and future ambitions. It is the trusted choice for higher education in Pakistan.

HSSC-ADVANCE COMPUTER SCIENCE
HSSC-Advance Computer Science at ZUEB is a foundation for exploring the digital world and
computational systems, designed for students aspiring to pursue higher education in software
engineering, information technology, data science, and related fields. The course offers a
rigorous, concept-driven curriculum aligned with both national and international standards,
covering key topics such as programming, algorithms, data structures, computer hardware,
databases, networking, and cybersecurity. Students develop a strong grasp of computational
principles and practical applications, while enhancing their logical reasoning, problem-solving,
and analytical skills, ensuring they are both examination-ready and future-ready.

Aligned with national and international standards, HSSC-Advance Computer Science at ZUEB
equips students with a comprehensive understanding of modern computing, digital systems,
and emerging technologies. Designed for students aiming for careers in computer science,
software development, artificial intelligence, and information systems, the course builds
essential skills in computational thinking, coding, and system design.

Whether you are preparing for admission into top universities for computer science and
technology, or planning a career in software engineering, AI, or IT-related research, HSSC-
Advance Computer Science ensures you are academically prepared and nationally aligned, with
a flexible, student-focused learning approach. Explore more on what HSSC-Advance Computer
Science offers ZUEB HSSC-Advance Official Page.



Syllabus Overview
No
.

Content XII XIII AO Exam Details

1 Information and
Data

P1,
P2 -

1, 2 and 3 Combination of written exam
papers (externally set and

Representations marked) and a practical
demonstration of skills.

XII
2

Communication
and Internet
Technologies

P1
-

1, 2 and 3

3
Hardware and
Virtual Machines

P1
-

1, 2 and 3
Paper 1:

Basic Theory
Duration: 1 hour 45 minutes

Weighting: 25%4
Processor
Fundamentals

P1
-

1, 2 and 3

5
System Software P1

-
1, 2 and 3 Paper 2:

Basic Programming Skills
Duration: 1 hour 45 minutes

Weighting: 25%
6

Security, Privacy
and Data Integrity

P1
-

1, 2 and 3

7
Ethics and
Ownership

P1
-

1, 2 and 3
XIII

8
Databases P2

-
1, 2 and 3

Paper 3:

9
Computational
Thinking,

P3 1, 2 and 3 Practical
Duration: 2 hours 30 minutes

Algorithm Design
and -

Weighting: 50%

Problem-Solving

10
Data Types and P2 P3 1, 2 and 3
Structures

11
Programming P2 P3 1, 2 and 3

12
Software
Development -

P3 1, 2 and 3

13
Artificial
Intelligence (AI) -

P3 1, 2 and 3



Description of Assessment Objectives

● AO1: Demonstrate a clear understanding of the fundamental principles and
concepts of computer science, including abstraction, logic, algorithms, and data
representation.

● AO2: Apply knowledge of computer science principles and concepts to analyse
and interpret problems in computational terms.

● AO3: Design, implement, and evaluate computer-based solutions to problems,
making informed and justified decisions throughout the process.

Weighting of Assessment Objectives

Assessment Objectives P1 (%) P2 (%) P3 (%)

AO1 40 35 40

AO2 35 40 30

AO3 25 25 30



Aim:
The aim of this content is to equip learners with both theoretical and practical understanding of how
data is collected and converted between different bases.

1: Information and Data Representations

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand data
representation in the
context of binary and

character sets

1.1.1 Transform positive integers between
binary, hexadecimal, and denary.

AO2

1.1.2 Interpret how character sets are used
in computer systems.

AO1

1.1.3 Examine how binary data is used in
computer systems.

AO1

2 Understand ways in
which multimedia is
represented through
graphics and sound

1.2.1 Examine how a bitmap image is
represented and stored on a computer.

AO1

1.2.2 Describe how a vector graphic is AO1

1.2.3 Compare the suitability of bitmap
images and vector graphics for a
specific task.

AO3

1.2.4 Discuss the process of digitising an
analogue sound wave.

AO1

1.2.5 Assess the impact of altering the
sample rate and resolution on a sound
wave.

AO3

3 Understand the principles
of data compression

1.3.1 Evaluate the purpose of data
compression.

AO3

1.3.2 Distinguish between lossy and
lossless data compression.

AO1

4 Be able to demonstrate
the practical application

1.4.1 Explore methods for converting a
number from one base to another.

AO1



of information and data
representations

1.4.2 Execute calculations involving binary
addition and subtraction.

AO2

1.4.3 Use ASCII, extended ASCII, and
Unicode to represent textual data.

AO2

1.4.4 Examine lossy and lossless data
compression.

AO1

1.4.5 Support the use of a method in various
given scenarios.

AO3

1.4.6 Review appropriate methods of file
organisation and file access for a given
problem.

AO3

1.4.7 Choose and design a suitable user-
defined data type for a given problem.

AO3

1.4.8 Transform binary floating-point
numbers to denary and vice versa.

AO2

1.4.9 Standardize floating-point numbers. AO2

1.4.10 Explore how sound, image, or text can
be compressed using run-length
encoding.

AO1

5 Understand the concepts
of user-defined data

types

1.5.1 Explore the reasons why user-defined
data types are necessary.

AO1

1.5.2 Explain and utilize composite and non-
composite data types.

AO2

6 Understand the principles
of file organisation and

access

1.6.1 Identify the various methods of file
organisation and file access.

AO1

1.6.2 Explain and apply hashing algorithms. AO2

7 Understand floating-point
numbers, representation,

and manipulation

1.7.1 Outline the format of binary floating-
point real numbers.

AO1

1.7.2 Identify the consequences of binary
representation being an approximation
of the real number in certain cases.

AO1

1.7.3 Explain how binary representations
can lead to rounding errors.

AO1



Aim:
The aim of this content is to help learners develop a theoretical understanding of communication and
networks, including the internet.

2: Communication and Internet Technologies

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand networks
including the internet
(introduction to types of
network, hardware, and
data transmission)

2.1.1 Investigate the purpose and benefits
of networking devices.

AO1

2.1.2 Explore the characteristics of a LAN
and a WAN.

AO1

2.1.3 Evaluate whether a given network is a
LAN or a WAN.

AO3

2.1.4 Explain the use, benefits, and
drawbacks of cloud computing.

AO1

2.1.5 Examine the characteristics of a client-
server and peer-to-peer network.

AO1

2.1.6 Explain the benefits and drawbacks of
a client-server and peer-to-peer
network.

AO1

2.1.7 Support the choice of a client-server or
peer-to-peer network in a given
scenario.

AO3

2.1.8 Investigate the characteristics,
benefits, and drawbacks of different
network topologies.

AO1

2.1.9 Contrast wired and wireless networks. AO2

2.1.10 Categorize the benefits and
drawbacks of both wired and wireless
connections.

AO2



2.1.11 Examine the purpose of hardware
components that support a LAN.

AO1

2.1.12 Recommend the appropriate
components to create a LAN.

AO3

2.1.13 Clarify the role and function of a router
in a network.

AO1

2.1.14 Identify collisions in data transmission
and explain how Ethernet detects and
avoids collisions.

AO2

2.1.15 Contrast the internet and the WWW. AO2

2.1.16 Identify the hardware required to
communicate over the internet.

AO1

2.1.17 Evaluate the use of IP addresses in
the transmission of data over the
internet.

AO3

2.1.18 Compare the benefits of a URL over
an IP address.

AO2

2.1.19 Investigate the role of a DNS in
converting a URL to an IP.

AO1

2 Understand different
communication protocols

and their purposes

2.2.1 Identify why a protocol is essential for
communication between computers.

AO1

2.2.2 Investigate how protocol is
implemented as a stack, with each
layer having its own functionality.

AO1

2.2.3 Depict the TCP/IP protocol suite. AO2

2.2.4 Summarize the purposes of these
protocols: HTTP, FTP, POP3, IMAP,
SMTP, BitTorrent.

AO1

3 Understand the principles
of circuit and packet

switching

2.3.1 Explore the purpose, benefits, and
drawbacks of circuit switching and
packet switching.

AO1

2.3.2 Evaluate the use of packet and/or
circuit switching in a scenario.

AO3



Aim:
The aim of this content is to empower learners to conduct both theoretical and practical analysis of
hardware, virtual machines and their applications.

3: Hardware and Virtual Machines

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand the purpose
of computers and their

components.

3.1.1 Identify the differences between
primary and secondary storage.

AO1

3.1.2 Outline the items stored in secondary
storage.

AO1

3.1.3 Differentiate between RAM and ROM. AO1

3.1.4 Contrast SRAM with DRAM. AO2

3.1.5 List the differences between PROM,
EPROM, and EEPROM.

AO1

3.1.6 Examine the principal operations of a
range of hardware devices.

AO1

3.1.7 Explore the purpose and use of buffers
in a range of devices.

AO1

3.1.8 Investigate the uses of sensors and
identify appropriate sensors for a
scenario.

AO3

3.1.9 Differentiate between a monitoring
and control system.

AO2

3.1.10 Explore the use and function of a
monitoring and control system in a
given situation.

AO3



3.1.11 Discover and define the functions of:
NOT, AND, OR, NAND, NOR, and
XOR (EOR) truth tables.

AO1

3.1.12 Examine Reduced Instruction Set
Computers (RISC) and Complex
Instruction Set Computers (CISC)
processors.

AO1

3.1.13 Highlight the importance and use of
pipelining and registers in RISC
processors.

AO1

3.1.14 Explore the four basic computer
architectures (SISD, SIMD, MISD, and
MIMD).

AO1

3.1.15 Discuss the characteristics of
massively parallel computers.

AO1

3.1.16 Discuss the concept, benefits, and
limitations of a virtual machine.

AO1

2 Be able to demonstrate
the practical application
of hardware and virtual

machines.

3.2.1 Utilize the NOT, AND, OR, NAND,
NOR, and XOR logic gate symbols to
create the truth table for each of the
logic gates.

AO2

3.2.2 Build a logic circuit and logic
expression.

AO3

3.2.3 Develop truth tables for logic circuits,
including half adders and full adders.

AO3

3.2.4 Explain the function and design a truth
table for a flip-flop (SR, JK).

AO2

3.2.5 Apply Boolean algebra to manipulate
Boolean expressions.

AO2

3.2.6 Predict the use of, and apply a
Karnaugh map (K-map).

AO3



Aim:
The aim of this content is to equip learners with the ability to perform both theoretical and practical
analysis of CPU architecture, assembly language, and bit manipulation.

4: Processor Fundamental

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand processor
fundamentals.

4.1.1 Explain the Von Neumann model for a
computer system.

AO1

4.1.2 Examine the purpose and role of each
register in the Von Neumann model.

AO1

4.1.3 Assess the purpose and role of the
components within the processor.

AO2

4.1.4 Determine how the different ports
enable connection to peripherals.

AO2

4.1.5 Outline the stages of the Fetch-
Execute cycle.

AO1

4.1.6 Explain the purpose of interrupts. AO1

4.1.7 Demonstrate how interrupts are
handled in the Fetch-Execute cycle.

AO3

4.1.8 Investigate the relationship between
assembly language and machine code.

AO2

4.1.9 Explain the stages of the assembly
process for a two-pass assembler.

AO1

4.1.10 Classify assembly language
instructions.

AO2



4.1.11 Outline the different modes of
addressing.

AO1

4.1.12 Examine the impact of a shift on a
binary number.

AO2

2 Be able to demonstrate
the practical application

of processor
fundamentals.

4.2.1 Execute assembly language
instructions to dry run a program.

AO3

4.2.2 Carry out shifts on a binary number. AO2

4.2.3 Implement bit manipulation to check
values in registers.

AO3



Aim:
The aim of this content is to empower learners to develop both a theoretical understanding and
practical skills related to operating systems and language translators.

5: System Software

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understanding the
fundamentals of system

software.

5.1.1 Explain why a computer system
requires an Operating System.

AO1

5.1.2 Explain the key management tasks
carried out by the Operating System.

AO1

5.1.3 Support the need for utility software. AO2

5.1.4 Explore the purpose and function of
typical utility software.

AO2

5.1.5 Explain the purpose of program
libraries and the benefits of using a
library (including DLL).

AO1

5.1.6 Outline the purpose of an assembler,
compiler, and interpreter.

AO1

5.1.7 Analyze the benefits of using a
compiler and/or interpreter in a given
situation.

AO2

5.1.8 Identify the features found in an IDE. AO1

5.1.9 Clarify how an OS can maximize the
use of resources.

AO2

5.1.10 Demonstrate the ways in which the
user interface hides the complexities of
the hardware from the user.

AO3



5.1.11 Outline how processes are managed
by the OS.

AO1

5.1.12 Explain the use of virtual memory,
paging, and segmentation for memory
management.

AO1

5.1.13 Explore how an interpreter can
execute programs without producing a
translated version.

AO2

5.1.14 Investigate the various stages
involved in the compilation of a
program.

AO2

2 Be able to demonstrate
the

practical application of
system software

5.2.1 Apply Backus-Naur Form (BNF) and
syntax diagrams to express the
grammar of a language.

AO3

5.2.2 Utilize Reverse Polish Notation (RPN)
to evaluate expressions.

AO3



Aim:
The aim of this content is to equip learners with a theoretical understanding of, and practical
applications for, data security and data integrity.

6: Security, Privacy, and Data Integrity

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand the
fundamentals of security,

privacy, and data
integrity

6.1.1 Distinguish between the security,
integrity, and privacy of data.

AO1

6.1.2 Explain the threats to data and
computer systems.

AO1

6.1.3 Investigate how threats can be
prevented or restricted.

AO2

6.1.4 Assess the methods to secure data. AO3

6.1.5 Outline different validation routines. AO1

6.1.6 Explain how verification can ensure
data is identical to the original.

AO1

6.1.7 Support how data can be verified
during data entry and transfer.

AO3

6.1.8 Explore the key terms associated with
encryption.

AO1

6.1.9 Investigate the use of encryption,
including symmetric and asymmetric
encryption.

AO3

6.1.10 Explain the purpose and use of SSL
and TLS.

AO1

6.1.11 Explain how digital certificates are
applied.

AO1



Aim:
The aim of this content is to equip learners with a theoretical understanding of, and practical
applications for, copyright and artificial intelligence.

7: Ethics and Ownership

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand the
applications of ethics and

ownership

7.1.1 Explain the need for ethics and ethical
behavior.

AO1

7.1.2 Investigate the impact of acting
ethically and unethically.

AO2

7.1.3 Identify ways a person can act
ethically or unethically in a given
situation.

AO1

7.1.4 Outline the key features of a range of
software licenses.

AO1

7.1.5 Assess the need for Artificial
Intelligence (AI).

AO3

7.1.6 Evaluate the benefits and drawbacks
of AI.

AO3



Aim:
The aim of this content is to equip learners with the ability to perform both theoretical and practical
analysis of CPU architecture, assembly language, and bit manipulation.

8: Databases

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand database
concepts and database
management systems

8.1.1 Recognize the limitations of a file-
based approach.

AO1

8.1.2 Outline the features of a relational
database that address the limitations of
a file-based approach.

AO1

8.1.3 Analyze the normalization process of a
database.

AO2

8.1.4 Explain how a DBMS overcomes the
limitations of a file-based approach.

AO1

8.1.5 Explore the features and software
tools of a DBMS.

AO2

2 Be able to demonstrate a
practical application of

databases

8.2.1 Develop entity-relationship (E-R)
diagrams to document a database
design.

AO3

8.2.2 Rebuild a normalized database design
based on a given database description.

AO3

8.2.3 Assist with DDL and DML commands
written in SQL.

AO3

8.2.4 Write SQL scripts to perform DDL and
DML tasks.

AO3



Aim:
The aim of this content is to equip candidates with both a theoretical understanding and practical
knowledge of computational thinking skills and algorithms.

9: Computational Thinking, Algorithm Design, and Problem
Solving

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand theoretical
concepts of

computational thinking,
algorithm design and
problem solving

9.1.1 Explore the purpose of and need for
abstraction.

AO2

9.1.2 Investigate the purpose of and need
for decomposition.

AO2

9.1.3 Select appropriate identifier names. AO2

9.1.4 Explain how stepwise refinement can
be used to express an algorithm to a
level of detail suitable for programming.

AO1

9.1.5 Analyze a linear and binary search. AO2

9.1.6 Analyze an insertion sort and a bubble
sort.

AO2

9.1.7 Explore linked lists, stacks, queues,
and binary trees.

AO2

9.1.8 Explain the use of Big O notation to
specify time and space complexity.

AO1

9.1.9 Evaluate algorithms based on criteria
such as time taken and memory used.

AO3



9.1.10 Identify the essential features of
recursion.

AO1

9.1.11 Contrast the use of recursion and
iteration.

AO2

9.1.12 Assess what a compiler must do to
translate recursive programming code.

AO3

2 Be able to demonstrate
the practical application
of computational thinking
algorithm design and
problem solving

9.2.1 Create an abstract model of a system. AO3

9.2.2 Decompose a problem into its sub-
problems.

AO3

9.2.3 Construct programs in pseudocode
using input, process, and output.

AO3

9.2.4 Develop pseudocode using
assignment, sequence, selection, and
repetition (including logic statements).

AO3

9.2.5 Derive pseudocode from a structured
English description and a flowchart.

AO3

9.2.6 Design algorithms to implement a
binary and linear search.

AO3

9.2.7 Develop algorithms to implement
insertion and bubble sorts.

AO3

9.2.8 Develop algorithms to locate items in a
linked list and a binary tree.

AO3

9.2.9 Develop algorithms to insert items into
a stack, queue, linked list, and binary
tree.

AO3

9.2.10 Develop algorithms to delete an item
from a stack, a queue, and a linked list.

AO3

9.2.11 Investigate how an ADT can be
implemented using a built-in data type
and another ADT, and create
algorithms to implement this.

AO3

9.2.12 Design and trace recursive algorithms. AO3



Aim:
The purpose of this content is to help learners develop both theoretical understanding and practical
skills in data types, records, arrays, files, and abstract data types (ADTs).

10: Data Types and Structures

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand the concepts
of data types, records,
arrays, files, and abstract

data types

10.1.1 Apply and use appropriate data types
for a problem solution.

AO3

10.1.2 Identify a suitable data structure (1D
or 2D array) to use for a given task.

AO2

10.1.3 Justify why files are needed. AO1

10.1.4 Show how a queue, stack and linked
list can be implemented using arrays.

AO3

10.1.5 Evaluate how a stack, queue and
linked list are examples of ADTs.

AO3

10.1.6 Explore that an ADT is a collection of
data and a set of operations on those
data.

AO2

2 Be able to demonstrate
the practical knowledge

of data types and
structures

10.2.1 Apply a record structure to hold a set
of different data types under one
identifier.

AO3

10.2.2 Use the technical terms associated
with arrays.

AO1

10.2.3 Develop pseudocode for 1D and 2D
arrays.

AO3

10.2.4 Construct pseudocode to process
array data.

AO3



10.2.5 Write pseudocode to handle text files
that consist of one or more lines.

AO3

10.2.6 Implement a stack, queue and linked
list to store data.

AO3



Aim:
The purpose of this content is to equip learners with both theoretical understanding and practical
competence in programming and structured programming.

11: Programming

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand the concepts
of programming

11.1.1 Justify the purpose of the one loop
structure when solving problems.

AO2

11.1.2 Evaluate the terminologies associated
with procedures and functions.

AO2

11.1.3 Describe what is meant by a
programming paradigm.

AO1

11.1.4 Investigate the terminology associated
with OOP such as attributes, objects,
methods.

AO2

11.1.5 Assess the importance of exception
handling.

AO2

11.1.6 Illustrate when to consider the
constructor of an algorithm in terms of
its appropriateness.

AO2

2 Be able to demonstrate
the practical application

of programming

11.2.1 Apply a section of code that is
repeated multiple times.

AO3

11.2.2 Construct pseudocode from a given
design presented as either a program
flowchart or structured English.

AO3

11.2.3 Create pseudocode statements for:
▪ the declaration of variables and
constants
▪ the assignment of values to variables
and constants
▪ expressions involving any of the
arithmetic or logical operators, input
from the keyboard, and output to the
console.

AO3



11.2.4 Apply pseudocode to produce:
▪ an IF structure including ELSE and
nested IF statements
▪ a CASE statement
▪ a count-controlled loop
▪ a post-condition loop
▪ a pre-condition loop

AO3

11.2.5 Implement parameters in a procedure
and a function.

AO3

11.2.6 Develop efficient pseudocode. AO3

11.2.7 Construct low-level code that uses
various addressing modes.

AO3

11.2.8 Produce imperative programming code
that uses constructs, procedures and
functions.

AO3

11.2.9 Create low-level code that uses
various addressing modes.

AO3

11.2.10 Develop imperative programming code
that uses constructs, procedures and
functions.

AO3

11.2.11 Design program code to solve
problems by creating appropriate
classes and making use of OOP
techniques.

AO3

11.2.12 Modify and construct program code to
solve problems by writing appropriate
facts and rules.

AO3

11.2.13 Implement code to perform file-
processing operations.

AO3

11.2.14 Apply program code to use exception
handling.

AO3



Aim:
The purpose of this content is to provide learners with theoretical knowledge and practical experience
in the software development lifecycle, including program design, testing, and maintenance.

12: Software Development

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand the program
development lifecycle

12.1.1 Evaluate the purpose of a
development life cycle.

AO3

12.1.2 Assess the need for different
development life cycles depending on
the program being developed.

AO3

12.1.3 Review the principles, benefits and
drawbacks of each type of life cycle.

AO3

12.1.4 Outline the analysis, design, coding,
testing and maintenance stages in the
program development life cycle.

AO1

12.1.5 Discuss how faults in programs can be
exposed and avoided.

AO2

12.1.6 Justify the need for continuing
maintenance of a system and the
differences between each type of
maintenance.

AO3

12.1.7 Examine an existing program and
make amendments to enhance
functionality.

AO3

2 Be able to demonstrate
the practical application
of software development

12.2.1 Apply a structure chart to decompose
a problem into sub-tasks and express
the parameters passed between the
various modules, procedures or
functions which are part of the
algorithm design.

AO3



12.2.2 Develop a state-transition diagram to
document an algorithm.

AO3

12.2.3 Construct a state-transition diagram to
document an algorithm.

AO1

12.2.4 Identify the different types of errors. AO3

12.2.5 Correct identified errors. AO3

12.2.6 Implement different methods of testing
and appropriate data for each method.

AO3

12.2.7 Select appropriate data for a test plan. AO2

12.2.8 Explore the need for a test strategy
and test plan, and their likely contents.

AO2



Aim:
The purpose of this content is to help learners gain theoretical knowledge and practical experience in
artificial intelligence, focusing on graphs and their applications.

13: Artificial Intelligence

The learner will: SLO # Assessment Criteria - The learner
can:

Cognitive
levels

1 Understand artificial
intelligence graphs and

applications

13.1.1 Examine how graphs can be used to
aid Artificial Intelligence.

AO1

13.1.2 Evaluate how artificial neural networks
help with machine learning.

AO2

13.1.3 Review the use of Deep Learning,
Machine Learning and Reinforcement
Learning and the reasons for using
these methods.

AO3

13.1.4 Justify the reasons for using Deep
Learning, Machine Learning and
Reinforcement Learning.

AO3

13.1.5 Assess back propagation and
regression methods in machine
learning.

AO3

2 Be able to demonstrate
the practical application
of Artificial Intelligence

13.2.1 Apply A* and Dijkstra’s algorithms to
perform searches on a graph.

AO2

13.2.2 Develop a game using
sequence/selection/loops using
variables/constants/maths
symbols/input/output.

AO3



Use of Calculators

● Calculators are not permitted in any examination paper.

Programming Languages

ZUEB accepts solutions written in the following programming languages:

● Python
● C family of languages (e.g., C, C++, C#)
● Java
● Visual Basic
● PHP
● Delphi


